- 0 min read

Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium

Research Memorandum by Bart Cockx, Michael Lechner, Joost Bollens

Based on administrative data of unemployed in Belgium, we estimate the labour market effects of three training programmes at various aggregation levels using Modified Causal Forests, a causal machine learning estimator. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and unemployed. Simulations show that “black-box” rules that reassign unemployed to programmes that maximise estimated individual gains can considerably improve effectiveness: up to 20% more (less) time spent in (un)employment within a 30 months window. A shallow policy tree delivers a simple rule that realizes about 70% of this gain.

>> Download Research Mremorandum

back to overview